返回57、相对性原理与不可观测量(2 / 2)科学的逻辑首页

有人说,我们只能观测到现在的数据,那么大爆炸宇宙学和整个人类文明史也是不可靠的想象中的产物吗?一个简洁清晰的大爆炸图像不仅与广义相对论相一致,而且在此基础上推测的结论与大量实验数据相吻合,说明它们是一种很接近真相的东西,在没有更优秀的理论出现之前,我们当然还是选择相信这些图像。但是许多宇宙学家们还是因为奇点困难、暴涨如何停止等理论上的困难头疼,或许未来的量子引力理论会在解决这些困难的过程中给出不同的图像,而且,量子论的退相干历史诠释给我们的图像是世界只有一个,而历史有很多个。我们选择这些图像的原因往往是因为它们有用,可以解释大量数据,而不是理论上的自洽。

又有人说,微观粒子有波粒二象性,可我们观测时只看到粒子,波的图像代表了我们没有观测时的演化过程,那么波的图像也是不可靠的吗?通过获取干涉条纹我们可以得到只有波才有的波长信息,也可以设计实验测量波速或两列波的相位差,因此波不是不可观测量,可是我们也仅仅会获得一些描述波的实验数据,波在空间中传播并演化的图像仍然是大脑想象出来的。我们也可以用一种完全不同的图像代替这种波的图像化表示,费曼的路径积分图像就是一个明显的例子,在路径积分的图像中,同样可以得到电子的干涉条纹。

从以上的分析可以看出,图像化的不可观测过程确实存在主观的成份,甚至有可能越是巨大的成功越能掩盖理论的不自洽之处,也越容易蒙蔽人们探索的眼睛。海森伯的成功也至少说明了他的准则是一种值得一试的有价值的想法。

狭义相对性原理告诉我们四维闵可夫斯基时空是旋转对称各向同性的,其中描述力学量的向量的绝对方向其实就像绝对静止与绝对时间一样,是不可观测量。广义相对性原理将平直时空推广到弯曲时空,相当于平直坐标系推广到任意曲线坐标系,其中向量的绝对方向仍然是不可观测的,我们能够观测的仅仅是两个向量之间的方向差。这样,客观上不存在的绝对方向与主观上存在的绝对方向之间产生了矛盾。

尽管像坐标系、向量这种图像化的方法在科学史上产生了深刻的影响,指引我们发现和预测了大量现象,是一种非常有用的工具,但是真实的世界并不一定就是我们在坐标系中描述的那样,从电子的自能发散与电子自旋中可以看出一些端倪。电子的经典图像是以它为中心周围存在一些电场线,因此电子周围存在弥散的电场和连续的能量密度,而电子自旋导致经典理论难以理解的自旋角动量与磁矩。这些图像尽管帮我们理解和预测了大量实验数据,但是电子周围电场能量密度的总和却是无穷大,而且自旋并不能理解为自转。

量子场论解决问题的办法是认为电子本身有负无穷大的裸质量,以及认为自旋是一种非经典的内禀属性,这难免会让人觉得不舒服。不可观测的绝对方向或许就是产生这一矛盾的根源,从薛定谔的波动图像和费曼路径积分图像可以看出,针对同一组实验数据,我们可以脑补出不止一种不可观测的图像化演化过程,这些图像可能在预测新数据等方面非常有用,但图像的不唯一性决定了它们只可能是主观的。

在相对论中我们或许也面临同样的状况,由于绝对方向不可观测,我们可以构造其它符合实验数据的图像,此时真实的东西不再用坐标系和向量描述,而是用坐标系的“差”或向量“差”描述,这样我们可以获得坐标系与向量概念的一种推广:表象与矩阵。在表象与矩阵中理解和描述事物,尽管更加抽象,更加难以图像化的描述事物,但或许可以让我们离真理更近一些。